{VERSION 3 0 "IBM INTEL NT" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 }{CSTYLE " " -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Map le Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 39 "Finding the slope of a cu rve at a point" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "with(stud ent):" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 32 "Lets define the function f(x) = " }{XPPEDIT 18 0 "x^3;" "6#*$%\"xG\"\"$" }{TEXT -1 166 " .\nB e aware that if you want to define a function, you must first define t he function by stating the independent variable and then an arrow and \+ then the expression. " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 10 "f: =x->x^3;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGR6#%\"xG6\"6$%)opera torG%&arrowGF(*$)9$\"\"$\"\"\"F(F(F(" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 39 "Let's take a look at the graph of f(x)." }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%(tanlineG ,&%\"xG\"#7!#;\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plo t(f(x),x=-5..5,title=\"f(x)=x^3\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$!\"&\"\"!$!$D\"F*7$$!1LLLe%G?y %!#:$!1+[%4_WN4\"!#87$$!1mmT&esBf%F0$!1%4OFTh_o*!#97$$!1LL$3s%3zVF0$!1 k[@w0](R)F97$$!1ML$e/$QkTF0$!1+ODb*3>A(F97$$!1nmT5=q]RF0$!1X(*z#3ti;'F 97$$!1LL3_>f_PF0$!1Waed)zVG&F97$$!1++vo1YZNF0$!1cb2*y$HkWF97$$!1LL3-OJ NLF0$!19zx@&3.r$F97$$!1++v$*o%Q7$F0$!1E0$z\"3Q[IF97$$!1mmm\"RFj!HF0$!1 '[Fd'))*[X#F97$$!1LL$e4OZr#F0$!1mq7bSq+?F97$$!1+++v'\\!*\\#F0$!1yt(y\" )=2c\"F97$$!1+++DwZ#G#F0$!1f331L5*=\"F97$$!1+++D.xt?F0$!1^7qFxH=*)F07$ $!1LL3-TC%)=F0$!1QlgHZx*o'F07$$!1mmm\"4z)e;F0$!1)RI1$f.lXF07$$!1mmmm`' zY\"F0$!17))GI8NjJF07$$!1++v=t)eC\"F0$!1?'H^;5R$>F07$$!1nmm;1J\\5F0$!1 >HLhjMb6F07$$!1$***\\(=[jL)!#;$!1@!GeD?Lz&F\\r7$$!1'***\\iXg#G'F\\r$!1 %Rl:R9)zCF\\r7$$!1emmT&Q(RTF\\r$!1eo_(4]W4(!#<7$$!1lm;/'=><#F\\r$!1xEh ^SaC5Fir7$$!1EMLLe*e$\\!#=$!1FoOUc`-7!#A7$$\"1sm;zRQb@F\\r$\"1t/[XCK,5 Fir7$$\"1-+](=>Y2%F\\r$\"1#43fF&*[w'Fir7$$\"1vmm\"zXu9'F\\r$\"1(4nrv'= BBF\\r7$$\"1,+++&y))G)F\\r$\"1noW!)f\"\\p&F\\r7$$\"1++]i_QQ5F0$\"1;mcI Ej>6F07$$\"1,+D\"y%3T7F0$\"1gytdAj6>F07$$\"1++]P![hY\"F0$\"15*H%fsh^JF 07$$\"1LLL$Qx$o;F0$\"1:fhR-!Rk%F07$$\"1+++v.I%)=F0$\"1,w^e))*HR!)>F97$$\"1LLL3 s?6HF0$\"1V/r+_GnCF97$$\"1++DJXaEJF0$\"1wJCV]GcIF97$$\"1ommm*RRL$F0$\" 1V6%G=Edq$F97$$\"1om;a<.YNF0$\"16_%)=8!*eWF97$$\"1NLe9tOcPF0$\"1I^uW_M +`F97$$\"1,++]Qk\\RF0$\"1K<>,1KhhF97$$\"1NL$3dg6<%F0$\"1,#3-IFsD(F97$$ \"1ommmxGpVF0$\"1L,QIbET$)F97$$\"1++D\"oK0e%F0$\"1B%y.rV0h*F97$$\"1,+v =5s#y%F0$\"1?6n4(>S4\"F37$$\"\"&F*$\"$D\"F*-%'COLOURG6&%$RGBG$\"#5!\" \"F*F*-%&TITLEG6#Q)f(x)=x^36\"-%+AXESLABELSG6$Q\"xFi[l%!G-%%VIEWG6$;F( Fjz%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 46.000000 47.000000 0 }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 124 "L et's examine what's happening to this function around x=2. In particul ar, lets find out what the slope of f(x) is at x = 2." }}{PARA 0 "" 0 "" {TEXT -1 38 "Make a preliminary guess at the slope." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT -1 145 "Before we guess, let's adjust the wi ndow so the x and y scales are the same, then we can get a more realis tic idea of what the slope is at x = 2." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plot(f(x),x=-5..5,titl e=\"f(x)=x^3\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$!\"&\"\"!$!$D\"F*7$$!1LLLe%G?y%!#:$!1+[%4_WN4\"! #87$$!1mmT&esBf%F0$!1%4OFTh_o*!#97$$!1LL$3s%3zVF0$!1k[@w0](R)F97$$!1ML $e/$QkTF0$!1+ODb*3>A(F97$$!1nmT5=q]RF0$!1X(*z#3ti;'F97$$!1LL3_>f_PF0$! 1Waed)zVG&F97$$!1++vo1YZNF0$!1cb2*y$HkWF97$$!1LL3-OJNLF0$!19zx@&3.r$F9 7$$!1++v$*o%Q7$F0$!1E0$z\"3Q[IF97$$!1mmm\"RFj!HF0$!1'[Fd'))*[X#F97$$!1 LL$e4OZr#F0$!1mq7bSq+?F97$$!1+++v'\\!*\\#F0$!1yt(y\")=2c\"F97$$!1+++Dw Z#G#F0$!1f331L5*=\"F97$$!1+++D.xt?F0$!1^7qFxH=*)F07$$!1LL3-TC%)=F0$!1Q lgHZx*o'F07$$!1mmm\"4z)e;F0$!1)RI1$f.lXF07$$!1mmmm`'zY\"F0$!17))GI8NjJ F07$$!1++v=t)eC\"F0$!1?'H^;5R$>F07$$!1nmm;1J\\5F0$!1>HLhjMb6F07$$!1$** *\\(=[jL)!#;$!1@!GeD?Lz&F\\r7$$!1'***\\iXg#G'F\\r$!1%Rl:R9)zCF\\r7$$!1 emmT&Q(RTF\\r$!1eo_(4]W4(!#<7$$!1lm;/'=><#F\\r$!1xEh^SaC5Fir7$$!1EMLLe *e$\\!#=$!1FoOUc`-7!#A7$$\"1sm;zRQb@F\\r$\"1t/[XCK,5Fir7$$\"1-+](=>Y2% F\\r$\"1#43fF&*[w'Fir7$$\"1vmm\"zXu9'F\\r$\"1(4nrv'=BBF\\r7$$\"1,+++&y ))G)F\\r$\"1noW!)f\"\\p&F\\r7$$\"1++]i_QQ5F0$\"1;mcIEj>6F07$$\"1,+D\"y %3T7F0$\"1gytdAj6>F07$$\"1++]P![hY\"F0$\"15*H%fsh^JF07$$\"1LLL$Qx$o;F0 $\"1:fhR-!Rk%F07$$\"1+++v.I%)=F0$\"1,w^e))*HR!)>F97$$\"1LLL3s?6HF0$\"1V/r+_GnC F97$$\"1++DJXaEJF0$\"1wJCV]GcIF97$$\"1ommm*RRL$F0$\"1V6%G=Edq$F97$$\"1 om;a<.YNF0$\"16_%)=8!*eWF97$$\"1NLe9tOcPF0$\"1I^uW_M+`F97$$\"1,++]Qk\\ RF0$\"1K<>,1KhhF97$$\"1NL$3dg6<%F0$\"1,#3-IFsD(F97$$\"1ommmxGpVF0$\"1L ,QIbET$)F97$$\"1++D\"oK0e%F0$\"1B%y.rV0h*F97$$\"1,+v=5s#y%F0$\"1?6n4(> S4\"F37$$\"\"&F*$\"$D\"F*-%'COLOURG6&%$RGBG$\"#5!\"\"F*F*-%&TITLEG6#Q) f(x)=x^36\"-%+AXESLABELSG6$Q\"xFi[l%!G-%%VIEWG6$;F(Fjz%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 5 "f(2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\") " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 66 "plot(f(x),x=-10..10,y=- 10..10,title=\"y=x^3: x&y scales the same\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$!#5\"\"!$!%+5F*7 $$!1nmm;p0k&*!#:$!1-%ev;c$[()!#87$$!1LL$3e#4>R'>F37$$!1mmm\">s%HaF0$!1`;5WKc+;F37$$!1*** ***\\$*4)*\\F0$!1.>Ia]d[7F37$$!1+++]_&\\c%F0$!1sok[k#G^*!#97$$!1+++]1a ZTF0$!1,5;#=QY8(Fjo7$$!1mm;/#)[oPF0$!1I_o$y>=N&Fjo7$$!1LLL$=exJ$F0$!1> V]W(G?l$Fjo7$$!1LLLL2$f$HF0$!1]5Bk5oIDFjo7$$!1++]PYx\"\\#F0$!1'p.@8Gra \"Fjo7$$!1MLLL7i)4#F0$!1bLm!*3xU#*F07$$!1****\\P'psm\"F0$!1;Cm/ilMYF07 $$!1****\\74_c7F0$!1:BD8:&Q)>F07$$!1:LL$3x%z#)!#;$!1([@!y+cvcFfr7$$!1I LL3s$QM%Ffr$!1=9!HT_j>)!#<7$$!1^omm;zr)*!#=$!1;Y$*Q^G?'*!#A7$$\"1WLLez w5VFfr$\"1\"yVQcz0,)F^s7$$\"1.++v$Q#\\\")Ffr$\"1uks?i\">T&Ffr7$$\"1NLL e\"*[H7F0$\"1xOt0%\\&e=F07$$\"1++++dxd;F0$\"1%\\dVyKfb%F07$$\"1,++D0xw ?F0$\"1IH`W51d*)F07$$\"1,+]i&p@[#F0$\"1)G!>1eIH:Fjo7$$\"1+++vgHKHF0$\" 1GRa2QH@DFjo7$$\"1lmmmZvOLF0$\"1KFp\">?^r$Fjo7$$\"1,++]2goPF0$\"1\"39S H*H_`Fjo7$$\"1KL$eR<*fTF0$\"1-c6a2q)>(Fjo7$$\"1-++])Hxe%F0$\"1Um9rm\"f l*Fjo7$$\"1mm;H!o-*\\F0$\"1thM>_rU7F37$$\"1,+]7k.6aF0$\"1el3*R9Ve\"F37 $$\"1mmm;WTAeF0$\"1a$o0;GQ(>F37$$\"1****\\i!*3`iF0$\"1TXfM!G]W#F37$$\" 1NLLL*zym'F0$\"1:HFY4ekHF37$$\"1OLL3N1#4(F0$\"1ph2b57nNF37$$\"1pm;HYt7 vF0$\"1/hz&>w-C%F37$$\"1-+++xG**yF0$\"1'Q`4[c!H\\F37$$\"1qmmT6KU$)F0$ \"1hl;S=y0eF37$$\"1OLLLbdQ()F0$\"11TICC,tmF37$$\"1++]i`1h\"*F0$\"1QFIo \\V)o(F37$$\"1-+]P?Wl&*F0$\"1h*otnd@v)F37$$\"#5F*$\"%+5F*-%'COLOURG6&% $RGBG$F[[l!\"\"F*F*-%&TITLEG6#Q;y=x^3:~x&y~scales~the~same6\"-%+AXESLA BELSG6$Q\"xFh[lQ\"yFh[l-%%VIEWG6$;F(FjzFa\\l" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "plot(f(x),x=1.9..2.1, title= \"zoom in more\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$\"1+++++++>!#:$\"1************eoF*7$$ \"1LL$3VfV!>F*$\"1'Q1_/@j!pF*7$$\"1n;H[D:3>F*$\"1o))*[[rw%pF*7$$\"1LLe 0$=C\">F*$\"1o_8'=rV*pF*7$$\"1LL3RBr;>F*$\"1'R\\IK\"fTqF*7$$\"1n;zjf)4 #>F*$\"1m4;rvz)3(F*7$$\"1L$e4;[\\#>F*$\"14EP_=vKrF*7$$\"1+]i'y]!H>F*$ \"1h!o7/b%yrF*7$$\"1L$ezs$HL>F*$\"1Rk>ri#fA(F*7$$\"1+]7iI_P>F*$\"1&)>j \"3`MF(F*7$$\"1nm;_M(=%>F*$\"1k)ou?dDK(F*7$$\"1LL3y_qX>F*$\"1QOk\"y!*f O(F*7$$\"1++]1!>+&>F*$\"1_?w==4:uF*7$$\"1++]Z/Na>F*$\"19ifJNhkuF*7$$\" 1++]$fC&e>F*$\"1>UoJ]a7vF*7$$\"1L$ez6:B'>F*$\"1H\"4$*z[ib(F*7$$\"1nm;= C#o'>F*$\"1,/L4qV3wF*7$$\"1nmm#pS1(>F*$\"1;>v=[$Gl(F*7$$\"1+]i`A3v>F*$ \"1J^sOpp/xF*7$$\"1nmm(y8!z>F*$\"13x(et)z]xF*7$$\"1+]i.tK$)>F*$\"1s-n \")3f,yF*7$$\"1+](3zMu)>F*$\"1<1`8G;]yF*7$$\"1nm\"H_?<*>F*$\"1K'))e+d5 !zF*7$$\"1n;zihl&*>F*$\"1Jm1&3()z%zF*7$$\"1LL3#G,***>F*$\"1+/ZVa\"))*z F*7$$\"1L$ezw5V+#F*$\"1Q\"G>zS=0)F*7$$\"1+]PQ#\\\"3?F*$\"1!=3A')*=)4)F *7$$\"1LLe\"*[H7?F*$\"1!o.PaZ%[\")F*7$$\"1+++dxd;?F*$\"1*o&4sle+#)F*7$ $\"1++D0xw??F*$\"1\\\"\\b?4=D)F*7$$\"1+]i&p@[-#F*$\"1j-+SBd,$)F*7$$\"1 ++vgHKH?F*$\"1a45e(fqN)F*7$$\"1nmmZvOL?F*$\"1Vci#3GrS)F*7$$\"1++]2goP? F*$\"1\"ogR-23Y)F*7$$\"1L$eR<*fT?F*$\"1M;:A]k4&)F*7$$\"1++])Hxe/#F*$\" 1jEF+DDj&)F*7$$\"1n;H!o-*\\?F*$\"1!pB+5)*Qh)F*7$$\"1+]7k.6a?F*$\"1\\V( **Q]qm)F*7$$\"1nm;WTAe?F*$\"1.(*f=uA>()F*7$$\"1+]i!*3`i?F*$\"1(f(*R'e2 u()F*7$$\"1LLL*zym1#F*$\"1OyxB%=r#))F*7$$\"1ML3N1#42#F*$\"1^#*)>v#e\") ))F*7$$\"1n;HYt7v?F*$\"1[X3#*o\"e$*)F*7$$\"1+++xG**y?F*$\"1>&[tnYe)*)F *7$$\"1nmT6KU$3#F*$\"1NCS3dTV!*F*7$$\"1LLLbdQ(3#F*$\"1%\\`m)R6&4*F*7$$ \"1+]i`1h\"4#F*$\"1HC9eF][l$\"# @F][l%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }} }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 47 "plot(f(x), x= 1.99..2.01,t itle=\"keep zooming\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7S7$$\"1++++++!*>!#:$\"1++++!*f!)yF*7$$\"1L L3VfV!*>F*$\"1:EFp#zd)yF*7$$\"1n\"H[D:3*>F*$\"10ARS%)G!*yF*7$$\"1L$e0$ =C\"*>F*$\"1m<4G:O&*yF*7$$\"1L$3RBr;*>F*$\"1U\\@R/Z+zF*7$$\"1n\"zjf)4# *>F*$\"1HKKcsb0zF*7$$\"1Le4;[\\#*>F*$\"1CA6P`F5zF*7$$\"1+Dmy]!H*>F*$\" 13#fUhi^\"zF*7$$\"1Lezs$HL*>F*$\"1*4H.;>-#zF*7$$\"1+D@1Bv$*>F*$\"14buK ;EDzF*7$$\"1nm@Xt=%*>F*$\"1q=%zm]/$zF*7$$\"1L$3y_qX*>F*$\"1bLl[I-NzF*7 $$\"1++l+>+&*>F*$\"1p^#*oDF*$\"1V.xuaMXzF*7$$\"1++ NfC&e*>F*$\"1zUT`EL]zF*7$$\"1Lez6:B'*>F*$\"1s=0(Hj[&zF*7$$\"1nm\"=C#o' *>F*$\"1!*eR5HDgzF*7$$\"1nmEpS1(*>F*$\"19)GS_?['zF*7$$\"1+DOD#3v*>F*$ \"1#yBD%f8qzF*7$$\"1nmwy8!z*>F*$\"1:PAhH%[(zF*7$$\"1+DOIFL)*>F*$\"12OW Q%4+)zF*7$$\"1+v3zMu)*>F*$\"1o\\8?7$\\)zF*7$$\"1n;H_?<**>F*$\"1*)o\"*R (o+*zF*7$$\"1n\"zihl&**>F*$\"1QLSF&)y%*zF*7$$\"1L$3#G,****>F*$\"16Z3R: ))**zF*7$$\"1Lezw5V+?F*$\"1GLfOS<0!)F*7$$\"1+v$Q#\\\"3+#F*$\"1cj>rIy4! )F*7$$\"1L$e\"*[H7+#F*$\"1$4?;%Hw9!)F*7$$\"1++qvxl,?F*$\"1kvF-)4*>!)F* 7$$\"1+]_qn2-?F*$\"1U>6Lr%\\-)F*7$$\"1+Dcp@[-?F*$\"1wu.>Fv!)F*7$$\"1LL$*zym1?F*$\"1C\\R>;G!3)F*7$$\"1L$3N1#42?F*$\"1W4+.pS&3 )F*7$$\"1n\"HYt7v+#F*$\"1osm')=\\!4)F*7$$\"1++q(G**y+#F*$\"1_EyPj;&4)F *7$$\"1m;9@BM3?F*$\"1l.@+g_+\")F*7$$\"1LL`v&Q(3?F*$\"1^`\"*\\! \"#$\"$,#F_\\l%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 61 "Approximate the sl ope of f(x) at x = 2 using the graph above." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 174 "From the point-slope form of a line: y-y1 = m*(x-x1), but solved for y. I get the following equat ion for the tangent line at the point ( 2, f(2) ). We will learn abou t the " }{TEXT 256 1 "D" }{TEXT -1 23 " command in Maple soon!" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "tanline:=D(f)(2)*(x-2) + f(2);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%(tanlineG,&%\"xG\"#7!#;\"\"\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 57 "plot([f(x),tanl ine],x=-5..5,title=\"f(x)=x^3 & tan.line\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6'-%'CURVESG6$7S7$$!\"&\"\"!$!$D\"F *7$$!1LLLe%G?y%!#:$!1+[%4_WN4\"!#87$$!1mmT&esBf%F0$!1%4OFTh_o*!#97$$!1 LL$3s%3zVF0$!1k[@w0](R)F97$$!1ML$e/$QkTF0$!1+ODb*3>A(F97$$!1nmT5=q]RF0 $!1X(*z#3ti;'F97$$!1LL3_>f_PF0$!1Waed)zVG&F97$$!1++vo1YZNF0$!1cb2*y$Hk WF97$$!1LL3-OJNLF0$!19zx@&3.r$F97$$!1++v$*o%Q7$F0$!1E0$z\"3Q[IF97$$!1m mm\"RFj!HF0$!1'[Fd'))*[X#F97$$!1LL$e4OZr#F0$!1mq7bSq+?F97$$!1+++v'\\!* \\#F0$!1yt(y\")=2c\"F97$$!1+++DwZ#G#F0$!1f331L5*=\"F97$$!1+++D.xt?F0$! 1^7qFxH=*)F07$$!1LL3-TC%)=F0$!1QlgHZx*o'F07$$!1mmm\"4z)e;F0$!1)RI1$f.l XF07$$!1mmmm`'zY\"F0$!17))GI8NjJF07$$!1++v=t)eC\"F0$!1?'H^;5R$>F07$$!1 nmm;1J\\5F0$!1>HLhjMb6F07$$!1$***\\(=[jL)!#;$!1@!GeD?Lz&F\\r7$$!1'*** \\iXg#G'F\\r$!1%Rl:R9)zCF\\r7$$!1emmT&Q(RTF\\r$!1eo_(4]W4(!#<7$$!1lm;/ '=><#F\\r$!1xEh^SaC5Fir7$$!1EMLLe*e$\\!#=$!1FoOUc`-7!#A7$$\"1sm;zRQb@F \\r$\"1t/[XCK,5Fir7$$\"1-+](=>Y2%F\\r$\"1#43fF&*[w'Fir7$$\"1vmm\"zXu9' F\\r$\"1(4nrv'=BBF\\r7$$\"1,+++&y))G)F\\r$\"1noW!)f\"\\p&F\\r7$$\"1++] i_QQ5F0$\"1;mcIEj>6F07$$\"1,+D\"y%3T7F0$\"1gytdAj6>F07$$\"1++]P![hY\"F 0$\"15*H%fsh^JF07$$\"1LLL$Qx$o;F0$\"1:fhR-!Rk%F07$$\"1+++v.I%)=F0$\"1, w^e))*HR !)>F97$$\"1LLL3s?6HF0$\"1V/r+_GnCF97$$\"1++DJXaEJF0$\"1wJCV]GcIF97$$\" 1ommm*RRL$F0$\"1V6%G=Edq$F97$$\"1om;a<.YNF0$\"16_%)=8!*eWF97$$\"1NLe9t OcPF0$\"1I^uW_M+`F97$$\"1,++]Qk\\RF0$\"1K<>,1KhhF97$$\"1NL$3dg6<%F0$\" 1,#3-IFsD(F97$$\"1ommmxGpVF0$\"1L,QIbET$)F97$$\"1++D\"oK0e%F0$\"1B%y.r V0h*F97$$\"1,+v=5s#y%F0$\"1?6n4(>S4\"F37$$\"\"&F*$\"$D\"F*-%'COLOURG6& %$RGBG$\"#5!\"\"F*F*-F$6$7S7$F($!#wF*7$F.$!1+++]TVQtF97$F5$!1++]-r%36( F97$F;$!1+++l;!\\&oF97$F@$!1,++b'fsf'F97$FE$!1++]s@%3M'F97$FJ$!1++]U.6 .hF97$FO$!1++]-G&p&eF97$FT$!1++]AjP-cF97$FY$!1++]sih[`F97$Fhn$!1+++qGf (3&F97$F]o$!1+++:Lod[F97$Fbo$!1+++5'f))f%F97$Fgo$!1+++]J(*QVF97$F\\p$! 1+++!RC&)3%F97$Fap$!1++]AH4hQF97$Ffp$!1+++5\\l!f$F97$F[q$!1+++S%e:O$F9 7$F`q$!1++]#yk]4$F97$Feq$!1+++SF " 0 "" {MPLTEXT 1 0 62 "plot([f(x),tanline],x=1..3,title=\"y=x^3& tan.line zoomed-in\" );" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6'-%'CURVESG 6$7S7$$\"\"\"\"\"!F(7$$\"1LLL3VfV5!#:$\"1I&eb;nl8\"F.7$$\"1nm\"H[D:3\" F.$\"1())pJ^d]E\"F.7$$\"1LL$e0$=C6F.$\"1S%R?aG2U\"F.7$$\"1LL$3RBr;\"F. $\"1*\\h,lG)*e\"F.7$$\"1nm\"zjf)47F.$\"12^8fX%4x\"F.7$$\"1LLe4;[\\7F.$ \"14\\^_gp]>F.7$$\"1++Dmy]!H\"F.$\"1BF**=aA\\@F.7$$\"1LLezs$HL\"F.$\"1 qe26(e#oBF.7$$\"1++D@1Bv8F.$\"1CvI\\w\"4g#F.7$$\"1nmm@Xt=9F.$\"1uUb)oR c&GF.7$$\"1LL$3y_qX\"F.$\"1LZRUrK$4$F.7$$\"1+++l+>+:F.$\"1N!=85$GwLF.7 $$\"1+++vW]V:F.$\"1&o$e@WDxOF.7$$\"1+++NfC&e\"F.$\"1ODyW/t$)RF.7$$\"1L Lez6:B;F.$\"1Y(fy:'QwUF.7$$\"1nmm\"=C#o;F.$\"1t%RV0@Ek%F.7$$\"1nmmEpS1 F.$\"1iiXQ]-ZqF.7$$\"1nm\"zihl&>F.$\"1s8\\C*y**[ (F.7$$\"1LL$3#G,**>F.$\"19U<'pf\"))zF.7$$\"1LLezw5V?F.$\"1$**HI*=_G&)F .7$$\"1++v$Q#\\\"3#F.$\"17wF[eH=!*F.7$$\"1LL$e\"*[H7#F.$\"1&GL[:Wzc*F. 7$$\"1+++qvxl@F.$\"1*\\2*)*z(e,\"!#97$$\"1++]_qn2AF.$\"11b)R-')f2\"Fbt 7$$\"1++Dcp@[AF.$\"1*>Gxkcj8\"Fbt7$$\"1++]2'HKH#F.$\"11jV%)p)f?\"Fbt7$ $\"1nmmwanLBF.$\"1H*GkGH4F\"Fbt7$$\"1+++v+'oP#F.$\"1<9(*)\\)zU8Fbt7$$ \"1LLeR<*fT#F.$\"1c]pk#=-T\"Fbt7$$\"1+++&)HxeCF.$\"1L1t*3nk[\"Fbt7$$\" 1mm\"H!o-*\\#F.$\"1**4rlfng:Fbt7$$\"1++DTO5TDF.$\"1r_$QSV3k\"Fbt7$$\"1 nmmT9C#e#F.$\"1J@Wp5$=s\"Fbt7$$\"1++D1*3`i#F.$\"1)G(y/xU4=Fbt7$$\"1LLL $*zymEF.$\"1D[HQ^b'*=Fbt7$$\"1LL$3N1#4FF.$\"1h\")Q?I]))>Fbt7$$\"1nm\"H Yt7v#F.$\"1Tw52!yD3#Fbt7$$\"1+++q(G**y#F.$\"1iP\"ec(fr@Fbt7$$\"1mm;9@B MGF.$\"1dee(G-nF#Fbt7$$\"1LLL`v&Q(GF.$\"1sON-a`tBFbt7$$\"1++DOl5;HF.$ \"16!RY!HwzCFbt7$$\"1++v.UacHF.$\"1A.^42O%e#Fbt7$$\"\"$F*$\"#FF*-%'COL OURG6&%$RGBG$\"#5!\"\"F*F*-F$6$7S7$F($!\"%F*7$F,$!1,+++$ooZ$F.7$F2$!1* ****\\?%p@IF.7$F7$!1******HL!)4DF.7$F<$!1******4$>X*>F.7$FA$!1,++XVo\" [\"F.7$FF$!1*****\\o?i+\"F.7$FK$!1(*****\\g0R^!#;7$FP$!1@<++]k_Z!#=7$F U$\"13++]XnF]Fi\\l7$FZ$\"1******fU\"[-\"F.7$Fin$\"1,++qLj%[\"F.7$F^o$ \"1+++!y!G-?F.7$Fco$\"1,+++P0ADF.7$Fho$\"1.++?7&H-$F.7$F]p$\"1,++bT\"y Z$F.7$Fbp$\"1+++!=!p=SF.7$Fgp$\"1+++?J)oZ%F.7$F\\q$\"1'****\\Vq)4]F.7$ Faq$\"1******>Xl\"[&F.7$Ffq$\"1*****\\Vw#**fF.7$F[r$\"1*****\\!\\<#\\' F.7$F`r$\"1(*****\\FY1qF.7$Fer$\"1*****\\`R(yuF.7$Fjr$\"1+++]Q:))zF.7$ F_s$\"1+++b@H<&)F.7$Fds$\"1'****\\g3z(*)F.7$Fis$\"1(******)pQv%*F.7$F^ t$\"1,++S3L*)**F.7$Fdt$\"1+++jC@\\5Fbt7$Fit$\"1++]Z.'y4\"Fbt7$F^u$\"1+ ++Hb(=:\"Fbt7$Fcu$\"1+++s0T+7Fbt7$Fhu$\"1+++!4KAD\"Fbt7$F]v$\"1++](3!> *H\"Fbt7$Fbv$\"1+++#eF0N\"Fbt7$Fgv$\"1****\\j@$))R\"Fbt7$F\\w$\"1++]pV K\\9Fbt7$Faw$\"1+++I(*o)\\\"Fbt7$Ffw$\"1++](oq.b\"Fbt7$F[x$\"1+++#fX,g \"Fbt7$F`x$\"1*****4iZ5l\"Fbt7$Fex$\"1++]b\"G:q\"Fbt7$Fjx$\"1+++CX\"zu \"Fbt7$F_y$\"1*****p`y5!=Fbt7$Fdy$\"1*****R1H'[=Fbt7$Fiy$\"1++]VyK**=F bt7$F^z$\"1++]WI&y%>Fbt7$Fcz$\"#?F*-Fhz6&FjzF*F[[lF*-%&TITLEG6#Q:y=x^3 &~tan.line~zoomed-in6\"-%+AXESLABELSG6$Q\"xF\\el%!G-%%VIEWG6$;F(Fcz%(D EFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 54 "plot([f(x),tanline],x=1.9..2 .1, title=\"zoom in more\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6'-%'CURVESG6$7S7$$\"1+++++++>!#:$\"1************eoF* 7$$\"1LL$3VfV!>F*$\"1'Q1_/@j!pF*7$$\"1n;H[D:3>F*$\"1o))*[[rw%pF*7$$\"1 LLe0$=C\">F*$\"1o_8'=rV*pF*7$$\"1LL3RBr;>F*$\"1'R\\IK\"fTqF*7$$\"1n;zj f)4#>F*$\"1m4;rvz)3(F*7$$\"1L$e4;[\\#>F*$\"14EP_=vKrF*7$$\"1+]i'y]!H>F *$\"1h!o7/b%yrF*7$$\"1L$ezs$HL>F*$\"1Rk>ri#fA(F*7$$\"1+]7iI_P>F*$\"1&) >j\"3`MF(F*7$$\"1nm;_M(=%>F*$\"1k)ou?dDK(F*7$$\"1LL3y_qX>F*$\"1QOk\"y! *fO(F*7$$\"1++]1!>+&>F*$\"1_?w==4:uF*7$$\"1++]Z/Na>F*$\"19ifJNhkuF*7$$ \"1++]$fC&e>F*$\"1>UoJ]a7vF*7$$\"1L$ez6:B'>F*$\"1H\"4$*z[ib(F*7$$\"1nm ;=C#o'>F*$\"1,/L4qV3wF*7$$\"1nmm#pS1(>F*$\"1;>v=[$Gl(F*7$$\"1+]i`A3v>F *$\"1J^sOpp/xF*7$$\"1nmm(y8!z>F*$\"13x(et)z]xF*7$$\"1+]i.tK$)>F*$\"1s- n\")3f,yF*7$$\"1+](3zMu)>F*$\"1<1`8G;]yF*7$$\"1nm\"H_?<*>F*$\"1K'))e+d 5!zF*7$$\"1n;zihl&*>F*$\"1Jm1&3()z%zF*7$$\"1LL3#G,***>F*$\"1+/ZVa\"))* zF*7$$\"1L$ezw5V+#F*$\"1Q\"G>zS=0)F*7$$\"1+]PQ#\\\"3?F*$\"1!=3A')*=)4) F*7$$\"1LLe\"*[H7?F*$\"1!o.PaZ%[\")F*7$$\"1+++dxd;?F*$\"1*o&4sle+#)F*7 $$\"1++D0xw??F*$\"1\\\"\\b?4=D)F*7$$\"1+]i&p@[-#F*$\"1j-+SBd,$)F*7$$\" 1++vgHKH?F*$\"1a45e(fqN)F*7$$\"1nmmZvOL?F*$\"1Vci#3GrS)F*7$$\"1++]2goP ?F*$\"1\"ogR-23Y)F*7$$\"1L$eR<*fT?F*$\"1M;:A]k4&)F*7$$\"1++])Hxe/#F*$ \"1jEF+DDj&)F*7$$\"1n;H!o-*\\?F*$\"1!pB+5)*Qh)F*7$$\"1+]7k.6a?F*$\"1\\ V(**Q]qm)F*7$$\"1nm;WTAe?F*$\"1.(*f=uA>()F*7$$\"1+]i!*3`i?F*$\"1(f(*R' e2u()F*7$$\"1LLL*zym1#F*$\"1OyxB%=r#))F*7$$\"1ML3N1#42#F*$\"1^#*)>v#e \")))F*7$$\"1n;HYt7v?F*$\"1[X3#*o\"e$*)F*7$$\"1+++xG**y?F*$\"1>&[tnYe) *)F*7$$\"1nmT6KU$3#F*$\"1NCS3dTV!*F*7$$\"1LLLbdQ(3#F*$\"1%\\`m)R6&4*F* 7$$\"1+]i`1h\"4#F*$\"1HC9e!\\pF*7$F=$\"1(*****o![0+(F*7$FB$\"1****\\l:$=0(F*7$FG $\"1)***\\JzP*4(F*7$FL$\"1****\\R%4'[rF*7$FQ$\"1****\\NZ_*>(F*7$FV$\"1 ****\\XnF]sF*7$Fen$\"1+++E9[-tF*7$Fjn$\"1)****pLj%[tF*7$F_o$\"1,++y!G- S(F*7$Fdo$\"1,++q`?_uF*7$Fio$\"1+++A^H-vF*7$F^p$\"1,+]:9yZvF*7$Fcp$\"1 -++=!p=g(F*7$Fhp$\"1+++7$)oZwF*7$F]q$\"1++]Vq)4q(F*7$Fbq$\"1-++_a;[xF* 7$Fgq$\"1)***\\Vw#**z(F*7$F\\r$\"1.+]!\\<#\\yF*7$Far$\"1+++vik+zF*7$Ff r$\"1++]`R(y%zF*7$F[s$\"1+++&Q:))*zF*7$F`s$\"1'***\\:#H<0)F*7$Fes$\"1- +]g3z(4)F*7$Fjs$\"1)*****)pQv9)F*7$F_t$\"1(****R3L*)>)F*7$Fdt$\"1***** HY7#\\#)F*7$Fit$\"1****\\Z.'yH)F*7$F^u$\"1,++Hb(=N)F*7$Fcu$\"1-++s0T+% )F*7$Fhu$\"1.++!4KAX)F*7$F]v$\"1(***\\(3!>*\\)F*7$Fbv$\"1,++#eF0b)F*7$ Fgv$\"1.+]j@$))f)F*7$F\\w$\"1++]pVK\\')F*7$Faw$\"1)*****H(*o)p)F*7$Ffw $\"1-+](oq.v)F*7$F[x$\"1+++#fX,!))F*7$F`x$\"1.++@w/^))F*7$Fex$\"1**** \\b\"G:!*)F*7$Fjx$\"1-++CX\"z%*)F*7$F_y$\"1)****p`y5+*F*7$Fdy$\"1/++k! H'[!*F*7$Fiy$\"1****\\VyK*4*F*7$F^z$\"1.+]WI&y9*F*7$Fcz$\"1.++++++#*F* -Fhz6&FjzF^[lF[[lF^[l-%&TITLEG6#Q-zoom~in~more6\"-%+AXESLABELSG6$Q\"xF [el%!G-%%VIEWG6$;$\"#>F][l$\"#@F][l%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 104 "Did you notice that the slope of f(x) at x = 2 and the slope of t he tangent line at x = 2 are the same?!" }}{PARA 0 "" 0 "" {TEXT -1 113 "So if we knew the slope of the tangent line at some point, we cou ld find the slope of the function at that point." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 35 "Let's look at a d ifferent function." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "g:=x- > abs(x-2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gGR6#%\"xG6\"6$%)op eratorG%&arrowGF(-%$absG6#,&9$\"\"\"!\"#F1F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "plot(g(x),x=-3..6,title=\"g(x)=|x|\");" }} {PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7fn7 $$!\"$\"\"!$\"\"&F*7$$!1++]7c#Q!G!#:$\"1++]7c#Q![F07$$!1+](oKNJj#F0$\" 1+](oKNJj%F07$$!1++v[ie>F]o$\"1+](=p>e>#F0 7$$\"1U+++v\")3q!#=$\"1++]#=\"*H*>F07$$\"1++++#F]o7$$\"1+](os:n'=F0$\"1(**\\7tUGL\" F]o7$$\"1](oaKaL\">F0$\"1$)\\7`uck')!#<7$$\"1+D1CH**f>F0$\"1(**\\Pf22+ %Fft7$$\"1Q4rtDlr>F0$\"1Ri!*GEuMGFft7$$\"1v$fLA7L)>F0$\"1/D1kwxo;Fft7$ $\"17y+t=(\\*>F0$\"1(o(=#*p7G]Fgp7$$\"1]ilA:j1?F0$\"1*))\\ilA:j'Fgp7$$ \"1DJ&>#3&*H?F0$\"1gCJ&>#3&*HFft7$$\"1++D@,F`?F0$\"1v***\\77qK&Fft7$$ \"1+]7$fM'\\@F0$\"1'**\\7$fM'\\\"F]o7$$\"1*****\\1**fC#F0$\"1&*****\\1 **fCF]o7$$\"1++DOnaMCF0$\"1(***\\itYXVF]o7$$\"1+]7.j(ph#F0$\"1++DJIwph F]o7$$\"1++vLK`>GF0$\"1'***\\PBL&>)F]o7$$\"1*****\\kR:+$F0$\"1*****\\k R:+\"F07$$\"1,+]P.(e>$F0$\"1,+]P.(e>\"F07$$\"1+]7GG'>P$F0$\"1+]7GG'>P \"F07$$\"1,+]K%yWc$F0$\"1,+]K%yWc\"F07$$\"1**\\781iXPF0$\"1**\\781iXF07$$\"1++](['3?TF0$\"1++](['3?@F07$$ \"1+]7y+*QJ%F0$\"1+]7y+*QJ#F07$$\"1,++qfa+XF0$\"1,++qfa+DF07$$\"1++vy& G9p%F0$\"1++vy&G9p#F07$$\"1,]7$eI2)[F0$\"1,]7$eI2)GF07$$\"1+++l%zY0&F0 $\"1+++l%zY0$F07$$\"1***\\P^WSD&F0$\"1***\\P^WSD$F07$$\"1,++!**eBV&F0$ \"1,++!**eBV$F07$$\"1**\\78%zCi&F0$\"1**\\78%zCi$F07$$\"1+](o\"*[W!eF0 $\"1+](o\"*[W!QF07$$\"\"'F*$\"\"%F*-%'COLOURG6&%$RGBG$\"#5!\"\"F*F*-%& TITLEG6#Q)g(x)=|grx|gr6\"-%+AXESLABELSG6$Q\"xFc^l%!G-%%VIEWG6$;F(Fd]l% (DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}} {EXCHG {PARA 0 "" 0 "" {TEXT -1 108 "Let's zoom in at x = 2 and see if we can figure out the slope of g(x) at x = 2. Like we did with f(x) a bove." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "plot(g(x),x=1..3,title=\"g(x)=|x|\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 "6&-%'CURVESG6$7U7$$\"\"\"\"\"! F(7$$\"1LLL3VfV5!#:$\"1omm;p0k&*!#;7$$\"1nm\"H[D:3\"F.$\"1LL$3s%HaF17$$\"1+++l+>+:F.$\"1+++]$*4)*\\F17$$\"1+++vW]V:F.$\" 1+++]_&\\c%F17$$\"1+++NfC&e\"F.$\"1******\\1aZTF17$$\"1LLez6:B;F.$\"1n m;/#)[oPF17$$\"1nmm\"=C#o;F.$\"1NLL$=exJ$F17$$\"1nmmEpS1F.$\"1ULL$3x%z#)!#<7$$\"1nm\"zihl&>F.$\"1MLL3s$QM%Fer7$$\"1+]P Csyx>F.$\"1!***\\ivF@AFer7$$\"1LL$3#G,**>F.$\"1^omm;zr)*!#>7$$\"1L$3-D g5-#F.$\"1YL$3-Dg5#Fer7$$\"1LLezw5V?F.$\"1 " 0 "" {MPLTEXT 1 0 39 "plot(g(x),x=1.9..2.1,title= \"g(x)=|x|\");" }}{PARA 13 "" 1 "" {GLPLOT2D 400 300 300 {PLOTDATA 2 " 6&-%'CURVESG6$7U7$$\"1+++++++>!#:$\"1,++++++5!#;7$$\"1LL$3VfV!>F*$\"1' omm\"p0k&*!#<7$$\"1n;H[D:3>F*$\"1UL$3F*$\"1ummT %p\"e()F37$$\"1LL3RBr;>F*$\"1%om;4m(G$)F37$$\"1n;zjf)4#>F*$\"1OL$3i.9! zF37$$\"1L$e4;[\\#>F*$\"1zm;/R=0vF37$$\"1+]i'y]!H>F*$\"1/+]P8#\\4(F37$ $\"1L$ezs$HL>F*$\"1om;/siqmF37$$\"1+]7iI_P>F*$\"13+](y$pZiF37$$\"1nm;_ M(=%>F*$\"1\\LL$yaE\"eF37$$\"1LL3y_qX>F*$\"1tmm\">s%HaF37$$\"1++]1!>+& >F*$\"1'*****\\$*4)*\\F37$$\"1++]Z/Na>F*$\"1-++]_&\\c%F37$$\"1++]$fC&e >F*$\"1.++]1aZTF37$$\"1L$ez6:B'>F*$\"1lm;/#)[oPF37$$\"1nm;=C#o'>F*$\"1 ILL$=exJ$F37$$\"1nmm#pS1(>F*$\"1OLLL2$f$HF37$$\"1+]i`A3v>F*$\"15+]PYx \"\\#F37$$\"1nmm(y8!z>F*$\"1JLLL7i)4#F37$$\"1+]i.tK$)>F*$\"18+]P'psm\" F37$$\"1+](3zMu)>F*$\"1#***\\74_c7F37$$\"1nm\"H_?<*>F*$\"1JML$3x%z#)!# =7$$\"1n;zihl&*>F*$\"17LL3s$QM%Fgr7$$\"1+vVA(yx*>F*$\"1C,]ivF@AFgr7$$ \"1LL3#G,***>F*$\"1#Hrmm\"zr)*!#?7$$\"1L3-Dg5-?F*$\"1YL$3-Dg5#Fgr7$$\" 1L$ezw5V+#F*$\"1%=L$ezw5VFgr7$$\"1+]PQ#\\\"3?F*$\"1X,+v$Q#\\\")Fgr7$$ \"1LLe\"*[H7?F*$\"1>LLe\"*[H7F37$$\"1+++dxd;?F*$\"1')*****pvxl\"F37$$ \"1++D0xw??F*$\"1$****\\_qn2#F37$$\"1+]i&p@[-#F*$\"1.+]i&p@[#F37$$\"1+ +vgHKH?F*$\"12++vgHKHF37$$\"1nmmZvOL?F*$\"1$ommwanL$F37$$\"1++]2goP?F* $\"11++]2goPF37$$\"1L$eR<*fT?F*$\"1CL$eR<*fTF37$$\"1++])Hxe/#F*$\"1A++ ])Hxe%F37$$\"1n;H!o-*\\?F*$\"1*om\"H!o-*\\F37$$\"1+]7k.6a?F*$\"1.+]7k. 6aF37$$\"1nm;WTAe?F*$\"1mmm;WTAeF37$$\"1+]i!*3`i?F*$\"1<+]i!*3`iF37$$ \"1LLL*zym1#F*$\"1KLLL*zym'F37$$\"1ML3N1#42#F*$\"1dLL3N1#4(F37$$\"1n;H Yt7v?F*$\"1im;HYt7vF37$$\"1+++xG**y?F*$\"18+++xG**yF37$$\"1nmT6KU$3#F* $\"1kmmT6KU$)F37$$\"1LLLbdQ(3#F*$\"1[LLLbdQ()F37$$\"1+]i`1h\"4#F*$\"14 +]i`1h\"*F37$$\"1+]P?Wl&4#F*$\"1F+]P?Wl&*F37$$\"1+++++++@F*F+-%'COLOUR G6&%$RGBG$\"#5!\"\"\"\"!Fj[l-%&TITLEG6#Q)g(x)=|grx|gr6\"-%+AXESLABELSG 6$Q\"xF_\\l%!G-%%VIEWG6$;$\"#>Fi[l$\"#@Fi[l%(DEFAULTG" 1 2 0 1 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 }}}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 54 "So what do you think about the slope of g(x) at x = 2?" }} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 69 "What do y ou think about the slope of the tangent line to g(x) at x=2?" }}}} {MARK "27 1 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }